New Compounds

Synthesis of New Urethans. *p*-Cyclohexylsulfamoyl and *p*-Piperidinosulfonylcarbanilic Acid Esters

I. LALEZARI* AND H. GOLGOLAB

Department of Chemistry, Faculty of Pharmacy, University of Tehran, Tehran, Iran

Received March 19, 1971

In continuation of our search for new anticancer compounds,¹ new urethans listed in Table I were pre-

TABLE I

RSO2 NHCOOR'				
		Mp.	Yield,	
R	R'	°C	%	Formula ^a
Су ^ь	\mathbf{Et}	187	68	$C_{15}H_{22}N_2O_4S$
Су	<i>i</i> -Pr	188	77	$C_{16}H_{24}N_2O_4S$
Су	<i>tert-</i> Bu	182	61	$C_{17}H_{26}N_2O_4S$
Су	<i>n</i> -Am	142	76	$\mathrm{C_{18}H_{28}N_2O_4S}$
$\mathbf{C}\mathbf{y}$	$n ext{-Hex}$	130	72	$C_{19}H_{30}N_2O_4S$
Cy	<i>n</i> -Oct	135	73	$C_{21}H_{34}N_2O_4S$
Cy	Allyl	172	64	$C_{16}H_{22}N_2O_4S$
Cy	Benzyl	180	71	$C_{20}H_{24}N_2O_4S$
Cy	Cholesteryl	225	40	$C_{40}H_{61}N_2O_4S$
Cy	Cyclopentyl	200	87	$C_{18}H_{26}N_2O_4S$
Cy	Cyclohexyl	176	82	$C_{19}H_{28}N_2O_4S$
Cy	Cycloheptyl	194	62	$C_{20}H_{30}N_2O_4S$
Cy	Cycloctyl	178	86	$C_{21}H_{32}N_2O_4S$
Cy	o-Methoxyphenyl	160	54	$C_{20}H_{24}N_2O_5S$
Cy	p-Nitrophenyl	187	40	$C_{19}H_{21}N_{3}O_{6}S$
Cy	Ethylfurfuryl	154	97	$C_{20}H_{26}N_2O_5S$
Су	lpha-Cyclohexyl- $lpha$ - methylbenzyl	198	30	$C_{27}H_{36}N_2O_4S$
Су	Ph_2CH	209	63	$C_{26}H_{28}N_2O_4S$
Pip^{c}	Thymyl	178	85	$C_{22}H_{28}N_2O_4S$
Pip	o-Carboxyphenyl	141.5	92	$C_{19}H_{20}N_2O_6S$
Pip	Trityl	110	82	$C_{31}H_{30}N_2O_4S$
4 All compounds were analyzed for C. H. and the results were				

^a All compounds were analyzed for C, H, and the results were satisfactory. Similarly ir and nmr spectra were as expected. ^b Cyclohexylamino. ^c Piperidino.

pared by Curtius degradation of appropriate benzoyl azides.

The compounds proved to be inactive² (T/C = 89-103% at 400 mg/kg) against the L 1210 lymphoid leukemia in BDF₁ mice, and the Walker carcinosarcoma 256 in random-bred albino rats.

Experimental Section³

 $p\mbox{-}CyclohexylsulfamoylbenzoylAzide.—}p\mbox{-}Cyclohexylsulfamoylbenzoic acid ethyl ester (mp 100) was prepd by known methods from <math display="inline">p\mbox{-}cyclohexylsulfamoylbenzoic acid^4}$ and transformed to $p\mbox{-}$

cyclohexylsulfamoylbenzhydrazide (mp 174°). The hydrazide (2.97 g, 0.01 mole) in 20 ml of 50% AcOH was stirred at ice bath temp with 20 ml of a 5% aq NaNO₂ to give 2.56 g of azide (80%), mp 110° dec. Anal. ($C_{13}H_{16}N_4O_3S$) C, H.

p-Piperidinosulfonylbenzoyl azide was prepd similarly. *p*-Piperidinosulfonylbenzoic acid⁵ was transformed to the corresponding ester (mp 100°) then to hydrazide (mp 205°). This treated as above gave 1.8 g of azide (90%), mp 115° dec. Anal. ($C_{12}H_{14}N_4O_3S$) C, H.

General Preparation of Urethans.—The benzoyl azides (0.01 mole) and 0.02 mole of appropriate alcohol or phenol were refluxed for 1 hr in 20 ml of dry PhMe. The solvent was evapd and the residue was recrystd from dil EtOH. Et esters were also prepd by 5-hr refluxing of the azide in 10 times its wt of abs EtOH.

(5) Fujio Nagasawa, Japanese Patent 278 (1954): Chem. Abstr., 49, 11024e (1955).

Aldehyde Disubstituted Aminoacethydrazones as Potential Hypertensive Agents

A. TAJANA* AND R. POZZI

Research Division, Recordati s.a.s., Milan, Italy

Received March 27, 1971

In the course of our research on new nitrofuran derivatives, the usual pharmacological screening showed a hypertensive activity for 5-nitrofuran-2-aldehyde diethylaminoacethydrazone, 5-nitrofuran-2-aldehyde N-pyrrolidinoacethydrazone, and 5-nitrofuran-2-aldehyde hyde N-piperidinoacethydrazone.¹

This observation prompted us to synthesize a series of disubstituted acethydrazones. No activity on arterial pressure was found except for compds 1, 8, 15, 16, 33, and 44 which exhibited a light hypotensive activity. Some derivatives of naphthaldehydes, of 2,3,5,6-tetramethylbenzaldehyde, of 2-methylbenzofuran-3-aldehyde and of *p*-chlorobenzaldehyde (10, 11, 13, 21, 30, 32, 37, 48, 50, and 56) were found active ip in mice at 30-50 mg/kg (corresponding to about 0.2 LD_{50}) as anticonvulsants in electroshock.²

Experimental Section³

2-Formylbenzofuran.⁴—A mixt of 48.6 g (0.03 mole) of benzofuran-2-carboxylic acid and 178.47 g (1.5 moles) of SOCl₂ was refluxed for 2 hr. The SOCl₂ was distd at reduced pressure. The residue, dissolved in 450 ml of PhMe, was reduced by the procedure of Rosenmund. The catalyst was filtered, and the solvent was evapd *in vacuo* at 40° under N₂. The crude oil distd at 98° (0.5 mm), yield 31 g (72%). Anal. (C₉H₆O₂) C, H.

Aminoacethydrazones. Method A.—A mixt of 0.01 mole of aldehyde, 0.01 mole of aminoacethydrazide, aud 3 ml of EtOH was refluxed for 2 hr. When the products crystd, they were collected

⁽¹⁾ N. Sharghi, I. Lalezari, Gh. Niloufari, and F. Ghabgharan, J. Med. Chem., 13, 1248 (1970).

⁽²⁾ Screening results were supplied by CCNCS of the National Institutes of Health, Bethesda, Md.

⁽³⁾ Melting points were taken on a Leitz hot stage microscope and were uncorrected. The ir spectra were determined with a Leitz Model III spectrograph. Nmr spectra were obtained on a Varian A60A instrument.

⁽⁴⁾ C. S. Miller, U. S. Patent 2,608,512 (1953); Chem. Abstr., 47, 5440d (1953).

⁽¹⁾ E. Massarani, D. Nardi, A. Tajana, and L. Degen, J. Med. Chem., 14, 633 (1971).

⁽²⁾ E. Massarani, D. Nardi, and M. J. Magistretti, *ibid.*, 9, 617 (1966).

⁽³⁾ Melting points are uncorrected and were determined in a capillary tube. Analyses are indicated only by the symbols of the elements. The anal, results were within $\pm 0.4\%$ of theor values.

⁽⁴⁾ Other authors synthesized this compound with other methods [T. Reichstein and I. Reichstein, *Helv. Chim. Acta*. 13, 1275 (1930); H. Normont, C. R. Acad. Sci., 218, 683 (1944); M. Bisagni, J. Chem. Soc., 3688 (1955)].